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Abstract

Inductive knowledge graph completion (KGC) aims to pre-
dict missing triples with unseen entities. Recent works focus
on modeling reasoning paths between the head and tail entity
as direct supporting evidence. However, these methods de-
pend heavily on the existence and quality of reasoning paths,
which limits their general applicability in different scenar-
ios. In addition, we observe that latent type constraints and
neighboring facts inherent in KGs are also vital in inferring
missing triples. To effectively utilize all useful information
in KGs, we introduce CATS, a novel context-aware inductive
KGC solution. With sufficient guidance from proper prompts
and supervised fine-tuning, CATS activates the strong seman-
tic understanding and reasoning capabilities of large language
models to assess the existence of query triples, which consist
of two modules. First, the type-aware reasoning module eval-
uates whether the candidate entity matches the latent entity
type as required by the query relation. Then, the subgraph
reasoning module selects relevant reasoning paths and neigh-
boring facts, and evaluates their correlation to the query triple.
Experiment results on three widely used datasets demonstrate
that CATS significantly outperforms state-of-the-art methods
in 16 out of 18 transductive, inductive, and few-shot settings
with an average absolute MRR improvement of 7.2%.

Code — https://github.com/IDEA-FinAI/CATS

Introduction
Knowledge Graphs (KGs) are graph-structured knowledge
bases that represent facts with triples in the form of (head
entity, relation, tail entity). KGs become essential in various
downstream applications such as question answering (Sun
et al. 2024), fact checking (Kim et al. 2023), and recommen-
dation systems (Wang et al. 2019). In practice, most real-
world KGs are incomplete, which highlights the significance
of the knowledge graph completion (KGC) (or relation pre-
diction) task, which aims to predict the missing head or tail
entity from the query triples.

*Equal contribution.
†Corrsponding authors.
‡Independent researcher.
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Figure 1: A typical scenario of inductive knowledge graph
completion. The model needs to infer the nationality of the
unseen entity “António Guterres”.

Existing approaches to the KGC task usually perform well
under an “transductive setting”, where missing entities can
be observed in training triples. Conversely, the “inductive”
KGC task requires the model to handle newly emerged en-
tities, which is more reflective of real-world scenarios, as
KGs are continuously evolving. The inductive setting high-
lights the importance of three key contexts inherent in KGs,
namely entity types, reasoning paths, and neighboring facts.

First, relations within KGs impose latent type constraints
to head and tail entities being connected, which are crucial in
inferring potential missing triples. For instance, the relation
works in typically connects a person (head) and a location
(tail). Although we have not encountered newly emerged en-
tities during training, a triple can still be considered plausi-
ble if the head and tail entities conform to the implicit types
as required by the relation.

Second, reasoning paths provide direct clues for the exis-
tence of missing triple (Zha, Chen, and Yan 2022). However,
these paths can be unreliable in certain contexts. For exam-
ple, in Figure 1, if the training set contains numerous triples
such as (Joe Biden, works in, Washington, D.C.), (Wash-
ington, D.C., city of, U.S.), and (Joe Biden, has nationality,
U.S.), the model may come up with some rules like (works
in + city of = has nationality). It should be noted that such
implicit rules do not invariably apply. A notable counterex-
ample is António Guterres, who works in New York City as
the Secretary-General of the United Nations.

Finally, neighboring facts of the head and tail entities also
provide valuable clues for triple completion. For instance, in
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Figure 1, it is difficult to predict entity “António Guterres”
has a Portuguese nationality solely based on the available
reasoning path. Fortunately, the presence of specific neigh-
boring facts such as (António Guterres, born in, Lisbon) can
help disambiguate the proper answer from the distracter.

Despite great efforts, existing methods cannot fully uti-
lize these contexts. Specifically, embedding-based meth-
ods (Bordes et al. 2013; Sun et al. 2019) need expen-
sive re-training to embed unseen entities; GNN-based meth-
ods (Schlichtkrull et al. 2018; Teru, Denis, and Hamilton
2020) are less robust when few connections between exist-
ing and new entities are available; path-based methods (Das
et al. 2018; Zha, Chen, and Yan 2022) rely strongly on the
existence and reliability of reasoning paths between certain
entities; text-enhanced methods disregard entity type prop-
erties in KGs.

A direct and promising approach to effectively utilize the
three types of contexts is the integration of large language
models (LLMs). On the one hand, LLMs, trained on exten-
sive corpora, possess a fundamental understanding of the
type of KG entities. On the other hand, the strong seman-
tic understanding and reasoning capabilities enable LLMs
to capture crucial information from triples and paths (Liao
et al. 2024). Nevertheless, existing LLM-based KGC meth-
ods (Wei et al. 2023; Liu et al. 2024) can only re-rank candi-
date answers provided by previous KGC approaches. Conse-
quently, they are inevitably constrained by the limitations of
preceding models. Moreover, these approaches rely on addi-
tional triples from the validation set for in-context demon-
stration (Wei et al. 2023) or supervised fine-tuning (Liu et al.
2024), which can lead to severe information leakage when
being applied to inductive scenarios.

This paper proposes “CATS”, a novel Context-Aware ap-
proach for the inductive KGC task based on latent Type con-
straints and Subgraph reasoning. Considering the semantic
gap between natural language sentences and structural KG
triples, CATS fine-tunes and guides LLMs to assess the ex-
istence of potential missing triples from two perspectives.
First, the Type-Aware Reasoning (TAR) module evaluates
whether the candidate entity conforms to the implicit type
constrained by the relation. Since explicit type annotations
are not prevalent for entities in non-encyclopedic KGs (e.g.
Wordnet), we instead assess whether the candidate head/tail
entity and other head/tail entities connected by the same re-
lation belong to the same entity type. Then, the Subgraph
Reasoning (SR) module proposes a degree-based filtering
mechanism to select meaningful paths, and takes relevant
neighboring facts of the head and tail entity into consider-
ation. The superior long-context understanding capabilities
of LLMs allow the SR module to comprehensively evalu-
ate whether different paths and neighboring facts support the
existence of the specific triple. Finally, we ensemble the in-
ference results based on the scorings obtained from the two
modules mentioned above.

We conduct extensive experiments on three widely used
datasets: WN18RR, FB15k237, and NELL-995. The best
variant of CATS significantly outperforms state-of-the-art
approaches in 16 out of 18 transductive, inductive, and few-
shot settings with an average absolute improvement of 7.2%

in MRR and 10.1% in Hits@1. These results highlight the
importance of incorporating the three types of contexts in
KGs. Furthermore, ablation studies on various LLMs and
configurations show that the effectiveness of the proposed
method does not rely on internal knowledge and the scale of
LLMs. Our contributions are summarized as follows:

• We propose CATS, the first LLM-based inductive KGC
solution capable of handling unseen entities without any
external knowledge or prior inference results.

• We devise two novel triple evaluation mechanisms based
on latent type constraints, as well as the reasoning paths
and neighboring facts within the local subgraph.

• We conduct extensive experiments to evaluate the effec-
tiveness of CATS in different settings, and discuss the
contribution of each component and the LLM in detail.

Related Works
Embedding-based methods. The majority of KGC meth-
ods rely on KG embeddings, such as TransE (Bordes et al.
2013), RotatE (Sun et al. 2019), and GIE (Cao et al. 2022).
These methods learn a set of low-dimensional embeddings
for each entity and relation within the KG with certain
geometric assumptions, which are inherently transductive.
However, they require costly retraining to handle unseen en-
tities (Zha, Chen, and Yan 2022), limiting their adaptability
to inductive scenarios.

Graph neural network (GNN)-based methods. Graph
neural networks (GNNs) (Song, Zhang, and King 2023a,b)
are popular in natural language processing for modeling
relationships between entities (Ma et al. 2023). GNN-
based methods such as CompGCN (Vashishth et al. 2020),
RGCN (Schlichtkrull et al. 2018), and WGCN (Zhao et al.
2021) embed entities in a KG by iteratively aggregating fea-
tures from the local neighborhood. Nevertheless, these ap-
proaches struggle to produce meaningful embeddings for
newly emerged entities with few links to existing ones, and
are not applicable to entirely new graphs (Zha, Chen, and
Yan 2022). To conform to the inductive setting, GraIL (Teru,
Denis, and Hamilton 2020), and TACT (Chen et al. 2021)
embed entities in the local subgraph with their distances
to the head and tail entities of the query triple. How-
ever, such an embedding approach fails to distinguish dif-
ferent entities that share the same relative position. Con-
sequently, it cannot perform well when the subgraph of
query triple is large. RED-GNN (Zhang and Yao 2022) and
Adaprop (Zhang et al. 2023) enhance the message-passing
mechanisms through progressive and adaptive propagation.
Still, these methods fail to address the suboptimal perfor-
mance of GNNs on sparse graph structures.

Path-based methods. Path-based methods aim to mine
rules from the co-existences of certain reasoning paths con-
necting the head and tail entities in a triple and the relation
between them (Meilicke et al. 2018). In particular, Deep-
Path (Xiong, Hoang, and Wang 2017) and MINERVA (Das
et al. 2018) exploit random-walk with reinforcement learn-
ing to generate reasoning paths, while BERTRL (Zha, Chen,
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Figure 2: The statistics on the existence of reasoning paths
for the query triples in the FB15k-237 (inductive) dataset.

and Yan 2022) and KRST (Su et al. 2023) leverage breadth-
first search. However, the existence and quality of reasoning
paths between unseen entities is not ensured (Su et al. 2024),
which inevitably limits their generality.

Text-enhanced methods. In addition to the graph struc-
ture, the textual information provided in the KG also en-
tails valuable semantic knowledge (Li et al. 2024). Re-
cently, several KGC methods such as KG-BERT (Yao, Mao,
and Luo 2019), BERTRL (Zha, Chen, and Yan 2022), and
KRST (Su et al. 2023) employ PLMs to embed entities, re-
lations, and reasoning paths with textual labels and descrip-
tions. APST (Su et al. 2024) further introduces incomplete
anchor paths for unseen entities that are not connected with
any reasoning paths, achieving state-of-the-art performance.
As the authors stated in (Zha, Chen, and Yan 2022), combin-
ing multiple reasoning paths encourages knowledge interac-
tions. Nevertheless, their BERT-based backbone PLMs (De-
vlin et al. 2019) can only each reasoning path independently,
leaving significant room for improvements.

Preliminaries
Problem specification. A knowledge graph (or “KG” de-
noted as G = {E ,R, T } consists of a set of triples T =
{(h, r, t)} where head and tail entities h, t ∈ E , relation
r ∈ R. E and R denote the set of entities and relations,
respectively. Following the convention of (Teru, Denis, and
Hamilton 2020; Su et al. 2023, 2024), the task of inductive
knowledge graph completion is defined as follows:

Definition 1 (Inductive KGC): Given a training graph
Gtrain = {Etrain,Rtrain, Ttrain} and a test graph Gtest = {Etest,
Rtest, Ttest}, the inductive KGC task aims to complete the
missing head or tail entity from a set of query triples Q =

{hq, rq, tq}|Q|
q=1 such that Etrain ∩ Etest = ∅, Rtest ⊆ Rtrain,

∀q, hq, tq ∈ Etest, rq ∈ Rtest.
The settings of the inductive KGC task ensure that entities

in the training and test KGs form two disjoint sets. Only the
triples in the training graph can be used in model training,
while triples in the test graph are provided as evidence for
query triple completion. Handling unseen entities requires
the model to have inductive reasoning capabilities.

Type properties of entities. Apart from triples, entities
within a KG are often annotated with entity types (or cat-
egories) in an ontological taxonomy (Hao et al. 2019). For
instance, in Freebase (Bollacker et al. 2008), entity “Albert

Einstein” belongs to the “/scientist/physicist” type. In gen-
eral, entity types provide a high-level summary of the salient
properties of their instance entities, which play a crucial role
in judging whether a specific entity is a plausible head or tail
of a specific query relation. Nonetheless, explicit type anno-
tations are typically scarce for entities in non-encyclopedic
KGs like Wordnet.

Reasoning paths. Since entities in the test graph are not
encountered during training, recent state-of-the-art meth-
ods (Su et al. 2023, 2024) leverage reasoning paths to make
predictions.

Definition 2 (Reasoning path): Given a query triple
(hq, rq, tq), a reasoning path is a sequence of triples that
connects head entity hq and tail entity tq . Formally, we have:

p(hq, tq) = hq
r0−→ e1,

r1−→ e2,
r2−→, ...,

rn−1−−−→ tq, (1)

which satisfies ∀i, (ei, ri, ei+1) ∈ Tx and ∀j, rj ̸= rq . Tx
denotes Ttrain during training and Ttest for model evalua-
tion. However, the existence and quality of reasoning paths
are not guaranteed, especially in few-shot scenarios. For in-
stance, our statistics in Figure 2 show that reasoning paths
are unavailable for 61 of the 205 query triples in the test
split of the FB15k-237 (inductive) dataset.

Methodology
Figure 3 shows the end-to-end architecture of the proposed
CATS framework. To get rid of the reliance on explicit type
annotations, we devise a more generalized approach to ex-
ploit latent type constraints w.r.t. relations in the Type-Aware
Reasoning (TAR) module. In addition, we incorporate rele-
vant neighboring facts and reasoning paths to support triple
assessment in the Subgraph Reasoning (SR) module. Fur-
thermore, we discuss our LLM supervised fine-tuning (SFT)
strategy, and aggregate our final predictions for query triples.

Type-aware Reasoning (TAR)
In KGs, entities connected by the same relation often pos-
sess similar attributes and characteristics, thereby belong-
ing to the same entity type. Therefore, when determining
whether an unknown entity is the head or tail entity of a
triple, we need to confirm that the entity conforms to the
type dictated by the relation. In practice, type properties are
not explicitly available for all entities in the KG. A direct
solution is to employ LLMs to annotate type information for
each candidate entity, and to summarize common type for
entities connected by the particular relation. However, an en-
tity may belong to multiple types with different granularities
in different domains. For instance, in Freebase, entity Nick
Mason corresponds to type person, film actor, and book au-
thor. Without clear guidance from explicit type annotations,
the type output from the LLM will be unstable.

Instead of explicitly conducting entity typing, we guide
the LLM to evaluate the plausibility of a triple by implicitly
considering the type relevance between the candidate head/-
tail entity and other head/tail entities connected by the same
relation. Figure 3 (top-right) shows the detailed prompts. For
each query triple (hq, rq, tq), we first sample a set of k triples
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Figure 3: The end-to-end pipeline of the proposed CATS framework.

Sr with the same relation rq as demonstrations. Formally,
we have Sr = {(h, rq, t)|h, t ∈ E \ {hq, tc}}. Then, we
linearize these structural triples with the textual labels of en-
tities and relations, which allows the LLM to summarize a
latent type triple e.g. (art work, nominated for, award) be-
tween the set of head and tail entities. Finally, we provide
the linearized query triple to the LLM, and ask the LLM to
output “Y” if the query triple is consistent with the same
pattern in terms of entity types and “N” otherwise.

We fine-tune the LLM with a contrastive learning strategy.
For each triple (h, r, t) ∈ Ttrain, we construct negative sam-
ples by replacing the head or tail entity with a random entity
from the training graph Gtrain. Then, we utilize the following
loss function for supervised fine-tuning:

LTAR =−
∑

(h,r,t)∈Ttrain

log p(ŷ = ‘Y’|Sr; Θ)

−
∑

(h,r,t)/∈Ttrain

log p(ŷ = ‘N’|Sr; Θ)), (2)

where ŷ denotes the first output token generated by the
LLM, Θ denotes the model parameters, p(ŷ = ‘Y’) is the
estimated probability that triple (h, r, t) holds.

Subgraph Reasoning (SR)
Within KGs, the knowledge about an entity is manifested in
its local subgraph (Li et al. 2024). Simply considering the
type of an entity is insufficient to assert that the candidate
entity should be connected to certain entities with a specific
relation. Recent studies (Zha, Chen, and Yan 2022; Su et al.

2023) have shown that reasoning paths provide direct evi-
dence for the existence of a particular relation between two
entities. Nevertheless, limited by the power of BERT-like
pre-trained language models, each reasoning path has to be
independently encoded and considered, which may lead to
unreliable relation prediction results. Inspired by the power-
ful reasoning capabilities of LLMs, we can model the inter-
actions between multiple reasoning paths and neighboring
facts of the two entities in a query triple.

Path extraction and filtering. Following the conven-
tion of (Su et al. 2023, 2024), we leverage breadth-first
search (BFS) to extract reasoning paths connecting the two
entities of the query triple. We only retain reasoning paths
with a length less than or equal to n, as extraordinarily long
paths contribute less to relation prediction. Moreover, we
find that some high-frequency relations, such as “has gen-
der” and “has color”, are meaningless for assessing the
existence of other relations (Su et al. 2023). On the con-
trary, infrequent fine-grained relations such as “appear in
film” usually offer more precise evidence. Hence, we de-
vise a degree-based filtering mechanism to find out mean-
ingful paths. Specifically, given a reasoning path p(hq, tq),
we count the occurrences or for each relation r ∈ p(hq, tq)
in the training triple set Ttrain. Then, we compute the degree
of the reasoning path dp(hq,tq) by summing up the occur-
rences of all relations within the path. Formally, we have:

dp(hq,tq) =
∑

r∈p(hq,tq)

or =
∑

r∈p(hq,tq)

∑
(h,r′,t)∈Ttrain

1(r = r′),

(3)



where 1(·) denotes the identifier function. Finally, for each
query triple (hq, rq, tq), we select β reasoning paths P(hq,tq)

with the lowest degrees dp(hq,tq) for assessment, while the
others are filtered out.

Neighboring facts selection. Since the existence of rea-
soning paths is not guaranteed, we further adopt neighbor-
ing facts of the head and tail entities of the query triple as
supplementary contexts. Specifically, for each query triple
(hq, rq, tq), we first collect supporting triples containing the
head entity hq or the tail entity tq from the training graph. *

Then, we embed the query triple and each supporting triple
with “bge-small-en v1.5” (Chen et al. 2024) sentence trans-
former. To safeguard the accuracy of our assessment against
irrelevant neighboring information, we select top σ support-
ing triples which the embeddings have the highest cosine
similarities to the query triple. Formally, we have

Thq
= argmax

(hq,r,t)∈Ttrain

cos(fbge(hq, r, t), fbge(hq, rq, tq)), (4)

Ttq = argmax
(h,r,tq)∈Ttrain

cos(fbge(h, r, tq), fbge(hq, rq, tq)), (5)

where cos(a, b) = a·b
||a||2·||b||2

, Thq
and Ttq are selected sup-

porting triples for hq and tq . Similarly, we design appropri-
ate prompts to instruct the LLM to output “Y” if the given
query triple can be supported by the aforementioned reason-
ing paths and neighboring triples and “N” otherwise (Fig-
ure 3 bottom). Then, we use the following loss function to
fine-tune the LLM:

LSR =−
∑

(h,r,t)∈Ttrain

log p(ŷ = ‘Y’|P(hq,tq), Thq
, Ttq ; Θ)

−
∑

(h,r,t)/∈Ttrain

log p(ŷ = ‘N’|P(hq,tq), Thq
, Ttq ; Θ).

(6)

Triple Scoring
During the inference stage, the commonly adopted evalua-
tion metrics require the KGC model to rank (or score) each
masked triple in the form of (h, r, ?) or (?, r, t) with a set
of candidate entities. Motivated by the complementary rela-
tionship between type properties and structural context, we
compose the final scoring of a triple s(h, r, t) by ensembling
the probabilities that the LLM outputs “Y” based on the two
kinds of prompts. Formally, we have

s(h, r, t) =
1

2
(p(ŷ = ‘Y’|Sr; Θ)

+ p(ŷ = ‘Y’|P(h,t), Th, Tt; Θ)
)
. (7)

Experiments
Datasets and Evaluation Metrics
We evaluate our proposed method on three widely adopted
benchmark KGs WN18RR (Miller 1995), FB15k-237 (Bol-
lacker et al. 2008), and NELL-995 (Carlson et al. 2010) with

*In inductive scenarios, supporting triples are selected from the
test graph during the evaluation phase.

Dataset Data splits |RG| |EG| |TG|

WN18RR train 9 2746 6670
train-2000 9 1970 2002
train-1000 9 1362 1001

test-transductive 7 962 638
test-inductive 8 922 1991

FB15k-237 train 180 1594 5223
train-2000 180 1280 2008
train-1000 180 923 1027

test-transductive 102 550 492
test-inductive 142 1093 2404

NELL-995 train 88 2564 10063
train-2000 88 1346 2011
train-1000 88 893 1020

test-transductive 60 1936 968
test-inductive 79 2086 6621

Table 1: Statistics of datasets.

their transductive and inductive subsets. Following the con-
vention of (Zha, Chen, and Yan 2022; Su et al. 2023, 2024),
we evaluate each query triple with 1 ground truth entity and
49 negative candidate entities. For a fair comparison, we use
the same dataset splits and negative triples provided by (Zha,
Chen, and Yan 2022). The detailed statistics of datasets are
available in Table 1. We score the plausibility of the query
triple with each candidate entity and rank them in descend-
ing order. The performance of our model is evaluated based
on two metrics: Mean Reciprocal Rank (MRR) and Hits@1.

Baselines and Experiment Settings
We compare CATS with embedding-based methods RuleN
and TuckER, GNN-based method GraIL, Red-GNN and
Adaprop, text-based methods KG-BERT, and path-based
methods MINERVA, BERTRL, KRST and the state-of-the-
art method APST. We select Qwen2-7B-Instruct (Yang et al.
2024) as our backbone LLM. The experimental results on
Llama-3-8B (AI@Meta 2024) and Qwen2-1.5B are also
included in our ablation studies. We employ LoRA (Hu
et al. 2021) for parameter-efficient fine-tuning, setting the
rank to 16 and α-value to 32. We use the AdamW opti-
mizer (Loshchilov and Hutter 2017) to fine-tune the LLM
with a learning rate of 1e-4, a per-device batch size of 2,
and a gradient accumulation step of 4 iterations for 1 epoch
only. For each query triple, we sample k = 3 supporting
triples with the same relation, δ = 6 reasoning paths and
σ = 6 neighboring facts. We construct the instruction set
by generating 12 negative samples for each positive triple
in Ttrain. All experiments are conducted on a server with 2
Intel Xeon Platinum 8358 processors and 8 NVIDIA A100
40G GPUs. † On average, CATS takes 2.4 hours for SFT and
1.43s to evaluate and rank a single test sample.

Main Results
We evaluate the proposed CATS framework on the three
datasets in transductive and inductive settings. The “TAR”

†Only 2 GPUs are used in our experiments.



Transductive Inductive
Metric Method WN18RR FB15k-237 NELL-995 WN18RR FB15k-237 NELL-995

MRR RuleN 0.669 0.674 0.736 0.780 0.462 0.710
GRAIL 0.676 0.597 0.727 0.799 0.469 0.675
RED-GNN 0.758 0.737 0.838 0.837 0.852 0.787
Adaprop 0.790 0.632 0.807 0.795 0.563 0.791
MINERVA 0.656 0.572 0.592 - - -
TuckER 0.646 0.682 0.800 - - -
KG-BERT - - - 0.547 0.500 0.419
BERTRL 0.683 0.695 0.781 0.792 0.605 0.808
KRST 0.899 0.720 0.800 0.890 0.716 0.769
APST 0.902 0.774 0.801 0.908 0.764 0.769
CATS (TAR) 0.956 0.812 0.836 0.937 0.834 0.750
CATS (SR) 0.972 0.829 0.869 0.992 0.875 0.906
CATS (full) 0.978 0.843 0.885 0.982 0.882 0.861

Hits@1 RuleN 0.646 0.603 0.636 0.745 0.415 0.638
GRAIL 0.644 0.494 0.615 0.769 0.390 0.554
RED-GNN 0.712 0.663 0.771 0.798 0.451 0.702
Adaprop 0.735 0.534 0.725 0.755 0.483 0.678
MINERVA 0.632 0.534 0.553 - - -
TuckER 0.600 0.615 0.729 - - -
KG-BERT - - - 0.436 0.341 0.244
BERTRL 0.655 0.620 0.686 0.755 0.541 0.715
KRST 0.835 0.639 0.694 0.809 0.600 0.649
APST 0.839 0.694 0.698 0.837 0.643 0.663
CATS (TAR) 0.922 0.726 0.745 0.888 0.744 0.624
CATS (SR) 0.951 0.752 0.792 0.984 0.804 0.849
CATS (full) 0.962 0.776 0.820 0.965 0.805 0.783

Table 2: Transductive and inductive KGC results on WN18RR, FB15k-237 and NELL-995

Transductive Inductive
WN18RR FB15k-237 NELL-995 WN18RR FB15k-237 NELL-995

Metric Method 1000 2000 1000 2000 1000 2000 1000 2000 1000 2000 1000 2000

MRR RuleN 0.567 0.625 0.434 0.577 0.453 0.609 0.681 0.773 0.236 0.383 0.334 0.495
GRAIL 0.588 0.673 0.375 0.453 0.292 0.436 0.652 0.799 0.380 0.432 0.458 0.462
RED-GNN 0.144 0.301 0.250 0.519 0.296 0.469 0.818 0.826 0.482 0.503 0.692 0.737
Adaprop 0.143 0.299 0.259 0.451 0.292 0.478 0.786 0.794 0.527 0.546 0.702 0.739
MINERVA 0.125 0.268 0.198 0.364 0.182 0.322 - - - - - -
TuckER 0.258 0.448 0.457 0.601 0.436 0.577 - - - - - -
KG-BERT - - - - - - 0.471 0.525 0.431 0.460 0.406 0.406
BERTRL 0.662 0.673 0.618 0.667 0.648 0.693 0.765 0.777 0.526 0.565 0.736 0.744
KRST 0.871 0.882 0.696 0.701 0.743 0.781 0.886 0.878 0.679 0.680 0.745 0.738
APST 0.874 0.880 0.724 0.753 0.745 0.767 0.894 0.879 0.697 0.747 0.765 0.747
CATS (TAR) 0.925 0.936 0.774 0.800 0.737 0.751 0.869 0.889 0.796 0.813 0.697 0.712
CATS (SR) 0.879 0.926 0.734 0.780 0.680 0.679 0.898 0.956 0.847 0.876 0.854 0.871
CATS (full) 0.932 0.952 0.787 0.824 0.741 0.762 0.922 0.953 0.862 0.877 0.808 0.829

Hits@1 RuleN 0.548 0.605 0.374 0.508 0.365 0.501 0.649 0.737 0.207 0.344 0.282 0.418
GRAIL 0.489 0.633 0.267 0.352 0.198 0.342 0.516 0.769 0.273 0.351 0.295 0.298
RED-GNN 0.108 0.267 0.196 0.449 0.214 0.379 0.777 0.785 0.380 0.422 0.549 0.605
Adaprop 0.107 0.260 0.188 0.366 0.218 0.386 0.741 0.749 0.425 0.451 0.580 0.630
MINERVA 0.106 0.248 0.170 0.324 0.152 0.284 - - - - - -
TuckER 0.230 0.415 0.407 0.529 0.392 0.520 - - - - - -
KG-BERT - - - - - - 0.364 0.404 0.288 0.317 0.236 0.236
BERTRL 0.621 0.637 0.517 0.583 0.526 0.582 0.713 0.731 0.441 0.493 0.622 0.628
KRST 0.790 0.810 0.611 0.602 0.628 0.678 0.811 0.793 0.537 0.524 0.637 0.629
APST 0.798 0.813 0.632 0.665 0.640 0.663 0.822 0.798 0.561 0.627 0.654 0.637
CATS (TAR) 0.871 0.888 0.678 0.714 0.628 0.636 0.774 0.811 0.680 0.707 0.584 0.596
CATS (SR) 0.802 0.874 0.631 0.681 0.574 0.563 0.824 0.915 0.756 0.800 0.767 0.790
CATS (full) 0.887 0.918 0.702 0.750 0.648 0.664 0.864 0.923 0.776 0.802 0.713 0.746

Table 3: Few-shot KGC results on WN18RR, FB15k-237 and NELL-995



and “SR” variants of CATS severally utilize the probabilities
generated by corresponding modules to score and rank each
candidate entity. Experimental Results in Table 2 demon-
strate that the CATS (full) significantly and consistently out-
performs all baseline methods. Most notably, CATS (full)
achieves absolute Hits@1 improvements of 12.8%, 16.2%,
and 6.8% on the WN18RR, FB15k-237, and NELL-995
datasets under an inductive setting. Correspondingly, the
improvements in transductive scenarios, namely 12.3%,
8.2%, and 9.1%, are also remarkable.

Among all CATS’ variants, the majority of best results (4
out of 6 cases) are achieved by the “full” variant, which ex-
hibits the importance of considering latent type constraints
and subgraph contexts. In comparison, the improvements
observed with the TAR variant are less pronounced, indi-
cating that while matching entity types may help filter out
irrelevant entities, it is insufficient for delivering accurate re-
lation predictions. Moreover, the TAR variant demonstrates
improved effectiveness in transductive settings. The better
performance can be credited to SFT, which enhances the
LLM’s understanding of the type properties of known en-
tities. However, the training graph does not contain any
contexts for unseen entities. Therefore, the LLM may not
be able to precisely infer types for some of them, thereby
compromising the performance of TAR in inductive scenar-
ios. Conversely, the SR variant benefits from neighboring
facts and reasoning paths sampled from the test graph, pro-
viding relevant contextual information for unseen entities
and allowing it to achieve state-of-the-art performance on
WN18RR and NELL-995 datasets in inductive settings.

Ablation Studies
We examine the effectiveness of each component of the pro-
posed CATS framework in different settings by answering
the following research questions (RQs).

RQ1: Can CATS generate plausible inference results in
few-shot scenarios? Table 3 shows the experiment results
on the three datasets with 1000 and 2000 triples in the train-
ing graph. In general, CATS achieves significant improve-
ments for 10 out of 12 cases in terms of MRR compared to
state-of-the-art methods. For the remaining cases, the per-
formance gap to the best baseline method is marginal. Con-
sidering the three variants of CATS, TAR outperforms SR in
transductive settings, while SR performs better in inductive
scenarios. The disparity in performance can be attributed to
the following reasons: Reducing the number of triples in the
training graph significantly decreases the average degree of
each entity. Consequently, it becomes challenging to sample
a sufficient number of neighboring facts and reasoning paths
for entities in the query triple, which diminishes the effec-
tiveness of the SR variant. However, in most KGs, the num-
ber of relations is considerably smaller than the number of
entities (|R| << |E|). Hence, we are still able to retrieve suf-
ficient triples with the same relation from the training graph,
which sustains the desirable performance of the TAR vari-
ant, and ensures the robustness of the the proposed frame-
work. In inductive scenarios, neighboring facts and reason-
ing paths are sampled from the supplementary test graph.

Hence, reducing training triples has subtle negative impacts
on the effectiveness of the SR variant.

One may notice that CATS does not achieve stat-of-the-art
performance on the NELL-995 dataset in transductive set-
tings. This is attributed to the higher number of triples in the
NELL-995 training graph. Selecting the subset of 1000 or
2000 triples results in an extremely sparse graph structure.
Without external knowledge, the training graph may fail to
provide sufficient support for the inference of certain triples,
thereby lowering the performance ceiling. For the same rea-
son, GNN-based methods such as RED-GNN (Zhang and
Yao 2022) and Adaprop (Zhang et al. 2023) exhibit signif-
icant performance drops in few-shot scenarios. Moreover,
KRST (Su et al. 2023) and APST (Su et al. 2024) take ad-
vantage of extra knowledge from entity descriptions, allow-
ing them to catch up with CATS.

RQ2: Do reasoning paths and neighboring facts improve
the inference performance? From the experimental re-
sults in Table 4, we observe that both reasoning paths and
neighboring facts play a crucial role in enhancing infer-
ence performance. However, the contribution of neighboring
triples is more pronounced. This reconfirms the key short-
coming of path-based methods, which struggle to assess
query triples without suitable paths. In comparison, neigh-
boring triples guarantee CATS’s robustness and generality.
Moreover, the performance decline resulting from the re-
moval of the path filtering step emphasizes the effectiveness
of the proposed degree-based filtering mechanism, further
reaffirming that irrelevant reasoning paths may misdirect the
evaluation of query triples.

RQ3: Can we simply attribute the performance improve-
ment to extra knowledge inherent in the LLM? We con-
duct additional experiments by presenting the query triple
and corresponding entities to the LLM, prompting the model
to make judgments with its internal knowledge. However,
experimental results in Table 5 indicate that the LLM fails
to make reliable assessments on KG triples in such a zero-
shot setting (see Qwen2-7B w/o. all), showing that CATS
does not benefit from the LLM’s internal knowledge. Fur-
thermore, the pre-trained LLM cannot adequately compre-
hend the contextual information (e.g., paths and triples) out-
lined in our prompts without proper guidance (see Qwen2-
7B w/o SFT). The unsatisfactory performance underscores
the substantial semantic gap between natural language sen-
tences and KG triples, emphasizing the importance of SFT.

RQ4: Can we simply attribute the performance improve-
ments to the power of LLMs? We conduct an extra ex-
periment by directly fine-tuning the LLM to evaluate the
plausibility of query triples based solely on the triple itself
(see Table 5 w/o. TAR & SR). The significant performance
decline indicates the following: despite possessing enhanced
semantic understanding capabilities, the LLM does not in-
herently know the appropriate method to evaluate a triple.
On the one hand, the backbone LLM in this variant cannot
recognize the importance of type relevance between the tar-
get entity and entities connected by the same relation. On the
other hand, the process of SFT is insufficient to inject knowl-



Transductive Inductive

Metric Configuration WN18RR RB15k-237 NELL-995 WN18RR RB15k-237 NELL-995

MRR CATS (SR) 0.972 0.829 0.869 0.992 0.875 0.906
- w/ NF only 0.962 0.824 0.861 0.971 0.873 0.895
- w/ RP (filt.) only 0.960 0.800 0.773 0.968 0.851 0.829
- w/ RP only 0.954 0.801 0.769 0.965 0.844 0.821

Hits@1 CATS (SR) 0.951 0.752 0.792 0.984 0.804 0.849
- w/ NF only 0.932 0.747 0.776 0.944 0.793 0.830
- w/ RP (filt.) only 0.932 0.714 0.666 0.941 0.768 0.729
- w/ RP only 0.929 0.714 0.660 0.937 0.756 0.724

Table 4: Transductive and Inductive KGC performance (in MRR) on the SR variant with different structural contexts. Here NF
denotes neighboring facts, RP denotes reasoning paths, and (filt.) refers to the application of path filtering.

Transductive Inductive

Metric LLM & Config. WN18RR RB15k-237 NELL-995 WN18RR RB15k-237 NELL-995

MRR Previous SOTA 0.902 0.774 0.801 0.908 0.764 0.808

Llama-3-8B (full) 0.965 0.802 0.867 0.956 0.862 0.837
Qwen2-1.5B (full) 0.966 0.804 0.877 0.948 0.814 0.835
Qwen2-7B (comb.) 0.967 0.830 0.861 0.985 0.859 0.885
Qwen2-7B (full) 0.978 0.843 0.885 0.982 0.882 0.861
- w/o. TAR & SR 0.947 0.800 0.811 0.901 0.814 0.710
- w/o. SFT 0.225 0.197 0.177 0.207 0.179 0.208
- w/o. all 0.199 0.140 0.156 0.174 0.144 0.138

Hits@1 Previous SOTA 0.839 0.694 0.698 0.837 0.643 0.715

Llama-3-8B (full) 0.942 0.718 0.794 0.931 0.783 0.750
Qwen2-1.5B (full) 0.940 0.720 0.809 0.912 0.722 0.748
Qwen2-7B (comb.) 0.941 0.750 0.779 0.971 0.778 0.811
Qwen2-7B (full) 0.962 0.776 0.820 0.965 0.805 0.783
- w/o. TAR & SR 0.905 0.705 0.704 0.824 0.707 0.572
- w/o. SFT 0.132 0.103 0.081 0.101 0.093 0.009
- w/o. all 0.152 0.093 0.103 0.128 0.093 0.087

Table 5: Transductive and Inductive KGC performance (in MRR) with different LLMs and configurations.

edge stored in KGs into the LLM. This reaffirms the sig-
nificance of providing relevant guidance and structural con-
texts in the KGC task. Furthermore, we investigate whether
combining prompts from the two reasoning modules im-
proves the model performance (see Table 5 (comb.)). Our
experiments show that the current adopted separated setting
achieves better results in most of the (4 out of 6) cases.

RQ5: How does the selection of backbone LLM affect the
experimental results? In Table 5, we evaluate the perfor-
mance of the proposed CATS framework on three LLMs,
namely Llama3-8B, Qwen2-1.5B, and Qwen2-7B. The ex-
perimental results show that CATS significantly and consis-
tently surpasses the state-of-the-art method with all these
LLMs, demonstrating its broad effectiveness across differ-
ent model scales and architectures. Most notably, CATS can
still achieve desirable results with an 1.5B model, which sig-
nificantly reduces the average inference time from 1.43s to
0.51s, showcasing a perfect balance between performance
and efficiency. Furthermore, the performance improvements

observed with the Qwen2-7B model indicate that increasing
the model size is likely to yield better results. Since com-
parison among different LLMs is not the primary focus, this
paper does not explore the performance of CATS with larger
LLMs due to time and resource constraints.

Conclusion
In this paper, we propose CATS, a novel context-aware ap-
proach for knowledge graph completion. CATS is designed
to guide the LLM to assess the plausibility of query triples
based on latent type constraints, selected reasoning paths,
and relevant neighboring facts. With sufficient guidance
from proper prompts and SFT, CATS achieves state-of-the-
art performance in transductive, inductive, and few-shot sce-
narios, showing its robustness and generality. Overall, CATS
demonstrates the potential of leveraging LLMs in conduct-
ing knowledge-intensive reasoning tasks on structural data.
In the future, we aim to incorporate LLMs in more compli-
cated KG-related tasks such as complex query answering.



Acknowledgment
The work described in this paper was partially supported by
the Research Grants Council of the Hong Kong Special Ad-
ministrative Region, China (CUHK 14222922, RGC GRF
2151185).

References
AI@Meta. 2024. Llama 3 Model Card.
Bollacker, K.; Evans, C.; Paritosh, P.; Sturge, T.; and Tay-
lor, J. 2008. Freebase: A Collaboratively Created Graph
Database for Structuring Human Knowledge. In Proceed-
ings of the 2008 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’08, 1247–1250. New
York, NY, USA: Association for Computing Machinery.
ISBN 9781605581026.
Bordes, A.; Usunier, N.; Garcia-Durán, A.; Weston, J.; and
Yakhnenko, O. 2013. Translating Embeddings for Model-
ing Multi-relational Data. In Burges, C. J. C.; Bottou, L.;
Welling, M.; Ghahramani, Z.; and Weinberger, K. Q., eds.,
Advances in Neural Information Processing Systems 26, vol-
ume 26. Curran Associates, Inc.
Cao, Z.; Xu, Q.; Yang, Z.; Cao, X.; and Huang, Q. 2022.
Geometry Interaction Knowledge Graph Embeddings. Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
36(5): 5521–5529.
Carlson, A.; Betteridge, J.; Kisiel, B.; Settles, B.; Hruschka,
E. R.; and Mitchell, T. M. 2010. Toward an architecture
for never-ending language learning. In Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intelligence,
AAAI’10, 1306–1313. AAAI Press.
Chen, J.; He, H.; Wu, F.; and Wang, J. 2021. Topology-
Aware Correlations Between Relations for Inductive Link
Prediction in Knowledge Graphs. Proceedings of the AAAI
Conference on Artificial Intelligence, 35(7): 6271–6278.
Chen, J.; Xiao, S.; Zhang, P.; Luo, K.; Lian, D.; and
Liu, Z. 2024. BGE M3-Embedding: Multi-Lingual, Multi-
Functionality, Multi-Granularity Text Embeddings Through
Self-Knowledge Distillation. arXiv:2402.03216.
Das, R.; Dhuliawala, S.; Zaheer, M.; Vilnis, L.; Durugkar,
I.; Krishnamurthy, A.; Smola, A.; and McCallum, A. 2018.
Go for a Walk and Arrive at the Answer: Reasoning Over
Paths in Knowledge Bases using Reinforcement Learning.
In International Conference on Learning Representations.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In Burstein, J.; Doran, C.; and
Solorio, T., eds., Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), 4171–4186. Minneapolis, Min-
nesota: Association for Computational Linguistics.
Hao, J.; Chen, M.; Yu, W.; Sun, Y.; and Wang, W. 2019.
Universal Representation Learning of Knowledge Bases by
Jointly Embedding Instances and Ontological Concepts. In
Proceedings of the 25th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, KDD ’19,

1709–1719. New York, NY, USA: Association for Comput-
ing Machinery. ISBN 9781450362016.
Hu, E. J.; Shen, Y.; Wallis, P.; Allen-Zhu, Z.; Li, Y.; Wang,
S.; Wang, L.; and Chen, W. 2021. Lora: Low-rank adaptation
of large language models. arXiv preprint arXiv:2106.09685.
Kim, J.; Park, S.; Kwon, Y.; Jo, Y.; Thorne, J.; and Choi, E.
2023. FactKG: Fact Verification via Reasoning on Knowl-
edge Graphs. In Rogers, A.; Boyd-Graber, J.; and Okazaki,
N., eds., Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1: Long
Papers), 16190–16206. Toronto, Canada: Association for
Computational Linguistics.
Li, M.; Hu, M.; King, I.; and Leung, H.-f. 2024. The Integra-
tion of Semantic and Structural Knowledge in Knowledge
Graph Entity Typing. In Proceedings of the 2024 Confer-
ence of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), 6625–6638. Mexico City, Mexico:
Association for Computational Linguistics.
Liao, R.; Jia, X.; Li, Y.; Ma, Y.; and Tresp, V. 2024.
GenTKG: Generative Forecasting on Temporal Knowledge
Graph with Large Language Models. arXiv:2310.07793.
Liu, Y.; Tian, X.; Sun, Z.; and Hu, W. 2024. Fine-
tuning Generative Large Language Models with Discrim-
ination Instructions for Knowledge Graph Completion.
arXiv:2407.16127.
Loshchilov, I.; and Hutter, F. 2017. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101.
Ma, Y.; Song, Z.; Hu, X.; Li, J.; Zhang, Y.; and King, I. 2023.
Graph Component Contrastive Learning for Concept Relat-
edness Estimation. In AAAI, 13362–13370. AAAI Press.
Meilicke, C.; Fink, M.; Wang, Y.; Ruffinelli, D.; Gemulla,
R.; and Stuckenschmidt, H. 2018. Fine-Grained Evalua-
tion of Rule- and Embedding-Based Systems for Knowledge
Graph Completion. In The Semantic Web – ISWC 2018:
17th International Semantic Web Conference, Monterey, CA,
USA, October 8–12, 2018, Proceedings, Part I, 3–20. Berlin,
Heidelberg: Springer-Verlag. ISBN 978-3-030-00670-9.
Miller, G. A. 1995. WordNet: a lexical database for English.
Commun. ACM, 38(11): 39–41.
Schlichtkrull, M.; Kipf, T.; Bloem, P.; Berg, R.; Titov, I.; and
Welling, M. 2018. Modeling Relational Data with Graph
Convolutional Networks, 593–607. ISBN 978-3-319-93416-
7.
Song, Z.; Zhang, Y.; and King, I. 2023a. Optimal Block-wise
Asymmetric Graph Construction for Graph-based Semi-
supervised Learning. In NeurIPS.
Song, Z.; Zhang, Y.; and King, I. 2023b. Towards Fair Fi-
nancial Services for All: A Temporal GNN Approach for In-
dividual Fairness on Transaction Networks. In CIKM, 2331–
2341. ACM.
Su, Z.; Wang, D.; Miao, C.; and Cui, L. 2023. Multi-aspect
explainable inductive relation prediction by sentence trans-
former. In Proceedings of the Thirty-Seventh AAAI Confer-
ence on Artificial Intelligence and Thirty-Fifth Conference
on Innovative Applications of Artificial Intelligence and



Thirteenth Symposium on Educational Advances in Artifi-
cial Intelligence, AAAI’23/IAAI’23/EAAI’23. AAAI Press.
ISBN 978-1-57735-880-0.
Su, Z.; Wang, D.; Miao, C.; and Cui, L. 2024. Anchor-
ing Path for Inductive Relation Prediction in Knowledge
Graphs. Proceedings of the AAAI Conference on Artificial
Intelligence, 38(8): 9011–9018.
Sun, J.; Xu, C.; Tang, L.; Wang, S.; Lin, C.; Gong, Y.; Ni,
L. M.; Shum, H.-Y.; and Guo, J. 2024. Think-on-Graph:
Deep and Responsible Reasoning of Large Language Model
on Knowledge Graph. arXiv:2307.07697.
Sun, Z.; Deng, Z.-H.; Nie, J.-Y.; and Tang, J. 2019. Ro-
tatE: Knowledge Graph Embedding by Relational Rotation
in Complex Space. In International Conference on Learning
Representations.
Teru, K. K.; Denis, E. G.; and Hamilton, W. L. 2020. In-
ductive relation prediction by subgraph reasoning. In Pro-
ceedings of the 37th International Conference on Machine
Learning, ICML’20. JMLR.org.
Vashishth, S.; Sanyal, S.; Nitin, V.; and Talukdar, P. 2020.
Composition-based Multi-Relational Graph Convolutional
Networks. In International Conference on Learning Rep-
resentations.
Wang, H.; Zhao, M.; Xie, X.; Li, W.; and Guo, M. 2019.
Knowledge Graph Convolutional Networks for Recom-
mender Systems. In The World Wide Web Conference,
WWW ’19, 3307–3313. New York, NY, USA: Association
for Computing Machinery. ISBN 9781450366748.
Wei, Y.; Huang, Q.; Zhang, Y.; and Kwok, J. 2023. KICGPT:
Large Language Model with Knowledge in Context for
Knowledge Graph Completion. In Bouamor, H.; Pino, J.;
and Bali, K., eds., Findings of the Association for Compu-
tational Linguistics: EMNLP 2023, 8667–8683. Singapore:
Association for Computational Linguistics.
Xiong, W.; Hoang, T.; and Wang, W. Y. 2017. DeepPath:
A Reinforcement Learning Method for Knowledge Graph
Reasoning. In Palmer, M.; Hwa, R.; and Riedel, S., eds.,
Proceedings of the 2017 Conference on Empirical Methods
in Natural Language Processing, 564–573. Copenhagen,
Denmark: Association for Computational Linguistics.
Yang, A.; Yang, B.; Hui, B.; Zheng, B.; Yu, B.; Zhou, C.;
Li, C.; Li, C.; Liu, D.; Huang, F.; Dong, G.; Wei, H.; Lin,
H.; Tang, J.; Wang, J.; Yang, J.; Tu, J.; Zhang, J.; Ma, J.;
Yang, J.; Xu, J.; Zhou, J.; Bai, J.; He, J.; Lin, J.; Dang, K.;
Lu, K.; Chen, K.; Yang, K.; Li, M.; Xue, M.; Ni, N.; Zhang,
P.; Wang, P.; Peng, R.; Men, R.; Gao, R.; Lin, R.; Wang, S.;
Bai, S.; Tan, S.; Zhu, T.; Li, T.; Liu, T.; Ge, W.; Deng, X.;
Zhou, X.; Ren, X.; Zhang, X.; Wei, X.; Ren, X.; Liu, X.;
Fan, Y.; Yao, Y.; Zhang, Y.; Wan, Y.; Chu, Y.; Liu, Y.; Cui,
Z.; Zhang, Z.; Guo, Z.; and Fan, Z. 2024. Qwen2 Technical
Report. arXiv:2407.10671.
Yao, L.; Mao, C.; and Luo, Y. 2019. KG-BERT:
BERT for knowledge graph completion. arXiv preprint
arXiv:1909.03193.
Zha, H.; Chen, Z.; and Yan, X. 2022. Inductive Relation
Prediction by BERT. Proceedings of the AAAI Conference
on Artificial Intelligence, 36(5): 5923–5931.

Zhang, Y.; and Yao, Q. 2022. Knowledge Graph Reason-
ing with Relational Digraph. In Proceedings of the ACM
Web Conference 2022, WWW ’22, 912–924. New York,
NY, USA: Association for Computing Machinery. ISBN
9781450390965.
Zhang, Y.; Zhou, Z.; Yao, Q.; Chu, X.; and Han, B. 2023.
AdaProp: Learning Adaptive Propagation for Graph Neu-
ral Network based Knowledge Graph Reasoning. In Pro-
ceedings of the 29th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining, KDD ’23, 3446–3457.
New York, NY, USA: Association for Computing Machin-
ery. ISBN 9798400701030.
Zhao, Y.; Qi, J.; Liu, Q.; and Zhang, R. 2021. WGCN: Graph
Convolutional Networks with Weighted Structural Features.
In Proceedings of the 44th International ACM SIGIR Con-
ference on Research and Development in Information Re-
trieval, SIGIR ’21, 624–633. New York, NY, USA: Associ-
ation for Computing Machinery. ISBN 9781450380379.


